Neighbouring-group Participation in the Chromium Trioxide Oxidation of Steroidal 4,5-Epoxides. X-Ray Molecular Structure of $4 \beta, 6 \beta, 17 \beta$-Triacetoxy$3 \beta, 5 \alpha$-dihydroxyandrostane

Nazar Flaih, James R. Hanson* and Peter B. Hitchcock School of Molecular Sciences, University of Sussex, Brighton, Sussex BN1 9QJ, UK

Abstract

Chromium trioxide oxidation of steroidal 3β-acetoxy- $4 \alpha, 5 \alpha$-epoxides affords products in which the acetoxy group has migrated to the 4β-position whilst oxidation of the isomeric $4 \beta, 5 \beta$-epoxides affords 5α-hydroxy-4-ketones without rearrangement. The effect of 3 -chloro and 6β-acetoxy substituents is explored.

The oxidation of secondary:tertiary epoxides by chromium trioxide to form α-ketols is a useful transformation. Hence, both steroidal $5 \alpha, 6 \alpha^{-1}$ and $5 \beta, 6 \beta$-epoxides ${ }^{2}$ afford 5α-hydroxy- 6 ketones. There is considerable evidence for neighbouring-group participation in the hydrolysis of the steroidal secondary: tertiary 4,5 -epoxides. ${ }^{3-6}$ This is exemplified by the migration of an acetoxy group from C-3 to C-4 or by the diequatorial opening of the $4 \alpha, 5 \alpha$-epoxide in the presence of a 6β-acetate. We have therefore examined the oxidation of some 3β-acetoxyand $3 \beta, 6 \beta$-diacetoxy-4,5-epoxides by chromium trioxide in the light of these observations. The results form the subject of this paper.
$3 \beta, 17 \beta$-Diacetoxy- $4 \alpha, 5 \alpha$-epoxyandrostane 3^{3} was obtained by epoxidation of $3 \beta, 17 \beta$-diacetoxyandrost-4-ene 1 with m chloroperbenzoic acid (MCPBA). The isomeric $3 \beta, 17 \beta$-di-acetoxy- $4 \beta, 5 \beta$-epoxyandrostane 7^{7} was obtained by epoxidation of 17β-acetoxy- 3β-hydroxyandrost- 4 -ene 2 followed by acetylation.

Oxidation of the $4 \alpha, 5 \alpha$-epoxide 3 with chromium trioxide in ethyl methyl ketone at $40{ }^{\circ} \mathrm{C}^{1}$ gave the 3-keto- 4β-acetate 5 in which the $4 \alpha-\mathrm{H}^{1} \mathrm{H}$ NMR signal appeared as a singlet at $\delta 4.91$. Hydrolysis of 3β-acetoxy- $4 \alpha, 5 \alpha$-epoxides is known ${ }^{3}$ to give 4β -acetoxy- $3 \beta, 5 \alpha$-diols. Oxidation of $4 \beta, 17 \beta$-diacetoxy- $3 \beta, 5 \alpha$-dihydroxyandrostane 6 with chromium trioxide in pyridine gave $4 \beta, 17 \beta$-diacetoxy- 5α-hydroxyandrostan-3-one 5 identical with the sample obtained above. On the other hand oxidation of the isomeric $3 \beta, 17 \beta$-diacetoxy- $4 \beta, 5 \beta$-epoxyandrostane 4 gave the 4-ketone in which the $3 \alpha-\mathrm{H}$ NMR signal appeared as a doubledoublet, $\delta 5.93, J 7.9$ and 12.2 Hz . The 5-hydroxy signal at $\delta 2.86$ was identified by a ${ }^{2} \mathrm{H}_{2} \mathrm{O}$ wash which led to its disappearance. Irradiation of the $3 x$-proton signal gave a nuclear Overhauser enhancement (NOE) (7%) of this signal thus establishing the 5α-hydroxy group's stereochemistry. Hence, rearrangement occurred with the $4 \alpha, 5 \alpha$-epoxide but not with the $4 \beta, 5 \beta$-isomer.

The possibility of neighbouring-group participation was then explored in the light of the possible intervention of a 6β-acetoxy group. ${ }^{6} 3 \beta, 6 \beta$-Diacetoxy- $4 \alpha, 5 \alpha$-epoxyandrostan-17-one 10 and $3 \beta, 6 \beta, 17 \beta$-triacetoxy- $4 \alpha, 5 x$-epoxyandrostane 11 were prepared as follows. Hydrolysis of 3β-acetoxy- $5 \alpha, 6 \alpha$-epoxyandrostan-17one 8 with periodic acid, acetylation of the resulting 6β-hydroxy group and dehydration of the 5α-hydroxy group with thionyl chloride ${ }^{8}$ gave the 4 -ene 9 , which was in turn epoxidized to afford $3 \beta, 6 \beta$-diacetoxy- $4 \alpha, 5 \alpha$-epoxyandrostan-17-one $\mathbf{1 0}$. Alternatively, reduction of the $17-$ ketone 9 , epoxidation and acetylation afforded $3 \beta, 6 \beta, 17 \beta$-triacetoxy- $4 \alpha, 5 \alpha$-epoxyandrostane 11 . Oxidation of both substrates with chromium trioxide gave separable mixtures of the 4β-acetoxy-3-ketones 12 and 13 and the 4β-acetoxy- $3 \beta, 5 \alpha$-diols 14 and 15 in which migration of the 3β-acetate to $C-4$ had taken place. This was established by the

multiplicity and chemical shift of the $4-\mathrm{H}$ NMR signals [δ 5.59 and 5.57 , singlet, in compounds 12 and $13 ; 5.03$ and 4.94 (broad singlet) in compounds 14 and 15]. The full stereochemistry of the product 15 was established by X-ray crystallography. Hence, oxidation has given the 5α-hydroxy steroid.

The presence of a $3 x$-chlorine has been shown ${ }^{2}$ to provide steric hindrance to the oxidation of $5 \beta, 6 \beta$-epoxides and hence its effect was examined here. 17β-Acetoxy- 3α-chloro- $4 \beta, 5 \beta$ epoxyandrostane 16 was prepared by treatment of the corresponding 3β-alcohol 17^{9} with triphenylphosphine-carbon tetrachloride. The corresponding 17β-acetoxy- 3β-chloro- $4 \beta, 5 \beta$ epoxyandrostane 18 was prepared by similar treatment of the 3α-alcohol 19. The 3α-chloro compound 16 was resistant to oxidation and was recovered unchanged after reaction treatment for 5 h . On the other hand oxidation of the 3β-chloro compound 18 gave an inseparable mixture of the 3β-chloro$4 \beta, 5 \alpha$-diol 20 and the corresponding 4 -ketone 21. This was eventually resolved by hydrogenolysis of the chloride with tributyltin hydride to afford the $4 \beta, 5 \alpha$-diol and the 4 -ketone, compounds 22 and 23.
Therefore the oxidative opening of steroidal $4 \alpha, 5 x$-epoxides

8

10; $\mathrm{R}=\mathrm{O}$ 11: $R=\alpha-H, \beta-O A c$

16; $\mathrm{R}=\alpha-\mathrm{Cl}, \beta-\mathrm{H}$
17; $\mathrm{R}=\alpha-\mathrm{H}, \beta-\mathrm{OH}$
18; $\mathrm{R}=\alpha-\mathrm{H}, \beta-\mathrm{CI}$
19; $\mathrm{R}=\alpha-\mathrm{OH}, \beta-\mathrm{H}$

12; $R^{1}=R^{2}=0$
13; $R^{1}=O, R^{2}=\alpha-H, \beta-O A C$
14; $R^{1}=\alpha-H, \beta-O H, R^{2}=O$ 15; $\mathrm{R}^{1}=\alpha-\mathrm{H}, \beta-\mathrm{OH}, \mathrm{R}^{2}=\alpha-\mathrm{H}, \beta-\mathrm{OAc}$

20; $\mathrm{R}^{1}=\mathrm{Cl}, \mathrm{R}^{2}=\alpha-\mathrm{H}, \beta-\mathrm{OH}$
21; $R^{1}=C l, R^{2}=0$
22; $R^{1}=H, R^{2}=\alpha-H, \beta-O H$
23: $R^{1}=H, R^{2}=O$

Fig. 1 X-Ray molecular structure of $4 \beta, 6 \beta, 17 \beta$-triacetoxy- $3 \beta, 5 \alpha$ dihydroxyandrostane 15
is accompanied by neighbouring-group participation from C-3 and there is steric hindrance from a 3α-chlorine atom.

Experimental

IR spectra were determined as Nujol mulls and ${ }^{1} \mathrm{H}$ NMR spectra were obtained for solutions in deuteriochloroform on a Bruker WM 360 spectrometer. J-Values are given in Hz . Extracts were dried over sodium sulphate. Silica for chromatography was Merck 9385 . Light petroleum refers to the fraction boiling in the range $60-80^{\circ} \mathrm{C}$.

Oxidation of $3 \beta, 17 \beta$-Diacetoxy- $4 \alpha, 5 \alpha$-epoxyandrostane.-Aq. chromium trioxide $(75 \%)\left(1 \mathrm{~cm}^{3}\right)$ was added dropwise to a stirred solution of $3 \beta, 17 \beta$-diacetoxy- $4 \alpha, 5 \alpha$-epoxyandrostane 3^{3}
$(500 \mathrm{mg})$ in ethylmethyl ketone ($6 \mathrm{~cm}^{3}$) at $35-40^{\circ} \mathrm{C}$. The solution was left for 20 min and then poured into water. The product was recovered in ethyl acetate. The combined extracts were washed thoroughly with water and dried. The solvent was evaporated off under reduced pressure to afford $4 \beta, 17 \beta$ -diacetoxy- $5 x$-hydroxyandrostan-3-one $5(450 \mathrm{mg}$), which crystallized from ethyl acetate-light petroleum as needles, m.p. 162$165^{\circ} \mathrm{C}$ (Found: 68.2; H, 8.5. $\mathrm{C}_{23} \mathrm{H}_{34} \mathrm{O}_{6}$ requires $\mathrm{C}, 68.0 ; \mathrm{H}$, 8.4%); $v_{\text {max }} / \mathrm{cm}^{-1} 3411$ and $1734 ; \delta 0.79\left(3 \mathrm{H}, \mathrm{s}, 18-\mathrm{H}_{3}\right), 1.10(3 \mathrm{H}$, $\left.\mathrm{s}, 19-\mathrm{H}_{3}\right), 4.59(1 \mathrm{H}, \mathrm{t}, J 8.5,17-\mathrm{H})$ and $4.91(1 \mathrm{H}, \mathrm{s}, 4-\mathrm{H})$.

Oxidation of $4 \beta, 17 \beta$-Diacetoxy- $3 \beta, 5 \alpha$-dihydroxyandrostane.A solution of the steroid $6^{3}(300 \mathrm{mg})$ in pyridine $\left(8 \mathrm{~cm}^{3}\right)$ was added to a stirred solution of chromium trioxide (1 g) in pyridine ($15 \mathrm{~cm}^{3}$). The mixture was stirred for 5 h at room temperature and then poured into diethyl ether ($70 \mathrm{~cm}^{3}$). Insoluble inorganic salts were removed by filtration through Celite. The Celite was washed with diethyl ether. The combined filtrates were washed successively with dil. hydrochloric acid, aq. sodium hydrogen carbonate and water, and were dried. Evaporation of the solvent afforded $4 \beta, 17 \beta$-diacetoxy- $5 \alpha-$ hydroxyandrostan-3-one $5(270 \mathrm{mg})$, identified by its IR and NMR spectra.

Oxidation of $3 \beta, 17 \beta$-Diacetoxy- $4 \beta, 5 \beta$-epoxyandrostane.-Aq. chromium trioxide $(75 \%)\left(2 \mathrm{~cm}^{3}\right)$ was added dropwise to a stirred solution of $3 \beta, 17 \beta$-diacetoxy- $4 \beta, 5 \beta$-epoxyandrostane $7{ }^{7}$ $(750 \mathrm{mg})$ in ethyl methyl ketone ($10 \mathrm{~cm}^{3}$) at $35-40^{\circ} \mathrm{C}$. The solution was left for 15 min and then poured into water. The product was recovered in ethyl acetate. The combined extracts were washed thoroughly with water and dried. The solvent was evaporated off under reduced pressure to afford $3 \beta, 17 \beta$ -diacetoxy-5 5 -hydroxyandrostan-4-one $7(610 \mathrm{mg})$, which was crystallized from diethyl ether-light petroleum as needles, m.p. $196-198^{\circ} \mathrm{C}$ (Found: C, 68.0 ; H, 8.4. $\mathrm{C}_{23} \mathrm{H}_{34} \mathrm{O}_{6}$ requires C, 68.0 ; $\mathrm{H}, 8.4 \%$) ; $v_{\text {max }} / \mathrm{cm}^{-1} 3515,1739$ and $1717 ; \delta 0.77(3 \mathrm{H}, \mathrm{s}$, $\left.18-\mathrm{H}_{3}\right), 0.79\left(3 \mathrm{H}, \mathrm{s}, 19-\mathrm{H}_{3}\right), 2.03$ and 2.14 (each $3 \mathrm{H}, \mathrm{s}, \mathrm{OAc}$), $2.86\left(1 \mathrm{H}, \mathrm{s}\right.$, removed by washing with $\left.\mathrm{D}_{2} \mathrm{O}, 5-\mathrm{OH}\right), 4.59(1 \mathrm{H}$, dd, $J 7.8$ and $9,17-\mathrm{H})$ and $5.93(1 \mathrm{H}, \mathrm{dd}, J 7.9$ and $12.2,3-\mathrm{H})$.

Epoxidation of $3 \beta, 6 \beta$-Diacetoxyandrost-4-en-17-one.-A solution of $3 \beta, 6 \beta$-diacetoxyandrost-4-en-17-one $9^{10}(4 \mathrm{~g})$ in chloroform ($150 \mathrm{~cm}^{3}$) was treated with MCPBA (5 g) at $0^{\circ} \mathrm{C}$. The mixture was allowed to attain room temperature and was stirred for 48 h . The solution was washed successively with aq. sodium sulphite, aq. sodium hydrogen carbonate and water, and was dried. The solvent was evaporated off to afford $3 \beta, 6 \beta$ -diacetoxy-4 α,5a-epoxyandrostan-17-one 10 (4 g), which was crystallized from ethyl acetate-light petroleum as needles, m.p. $168-170{ }^{\circ} \mathrm{C}$ (Found: C, 68.5 ; H, 8.1. $\mathrm{C}_{23} \mathrm{H}_{32} \mathrm{O}_{6}$ requires C, 68.3 ; $\mathrm{H}, 8.0 \%) ; v_{\max } / \mathrm{cm}^{-1} 1741 ; \delta 0.88\left(3 \mathrm{H}, \mathrm{s}, 18-\mathrm{H}_{3}\right), 1.19(3 \mathrm{H}, \mathrm{s}$, $19-\mathrm{H}_{3}$), 2.03 and 2.07 (each $3 \mathrm{H}, \mathrm{s}, \mathrm{OAC}$), 3.15 ($1 \mathrm{H}, \mathrm{s}, 4-\mathrm{H}$), $4.29(1 \mathrm{H}, \mathrm{t}, J 3,6-\mathrm{H})$ and $4.89(1 \mathrm{H}, \mathrm{t}, J 8,3-\mathrm{H})$.

Oxidation of $3 \beta, 6 \beta$-Diacetoxy-4 $\alpha, 5 \alpha$-epoxyandrostan-17-one.-Aq. chromium trioxide (75%) $\left(1 \mathrm{~cm}^{3}\right)$ was added dropwise to a stirred solution of $3 \beta, 6 \beta$-diacetoxy- $4 \alpha, 5 \alpha$-epoxy-androstan-17-one $10(450 \mathrm{mg})$ in ethyl methyl ketone ($5 \mathrm{~cm}^{3}$) at $35-40^{\circ} \mathrm{C}$. The mixture was left for 35 min and was then poured into water. The product was recovered in ethyl acetate. The extracts were washed thoroughly with water and dried. The solvent was evaporated off under reduced pressure and the residue was chromatographed on silica. Elution with 25% ethyl acetate-light petroleum gave $4 \beta, 6 \beta$-diacetoxy- 5α-hydroxy-androstane-3,17-dione $12(100 \mathrm{mg})$, which was crystallized from ethyl acetate-light petroleum as needles, m.p. $227-229^{\circ} \mathrm{C}$ (Found: C, 64.5; H, 7.95. $\mathrm{C}_{23} \mathrm{H}_{32} \mathrm{O}_{7} \cdot 0.5 \mathrm{H}_{2} \mathrm{O}$ requires $\mathrm{C}, 64.3$; $\mathrm{H}, 7.7 \%) ; v_{\max } / \mathrm{cm}^{-1} 3397,1741,1738$ and $1735 ; \delta 0.92(3 \mathrm{H}$,

Table 1 Fractional atomic co-ordinates $\left(\times 10^{4}\right)$

	Molecule a			Molecule b		
	x	y	z	x	y	z
$\mathrm{O}(1)$	4 675(4)	$-600(0)$	-2 203(3)	$13111(3)$	$6118(10)$	$5884(3)$
$\mathrm{O}(2)$	$3733(6)$	226(15)	-3205(3)	14116 (5)	5 574(17)	$6896(3)$
$\mathrm{O}(3)$	1016(3)	958(7)	-680(2)	$9878(3)$	4 670(7)	$7774(2)$
$\mathrm{O}(4)$	1946 (3)	2 646(7)	$1063(2)$	7 972(3)	2060 (7)	$6801(2)$
$\mathrm{O}(5)$	$1199(4)$	$1258(10)$	$1589(3)$	$6809(4)$	$3614(10)$	$6755(3)$
$\mathrm{O}(6)$	453(3)	4 608(9)	554(2)	8 391(4)	910(8)	$8160(3)$
$\mathrm{O}(7)$	2 984(3)	35(7)	826(2)	8 244(3)	4 946(8)	6 049(2)
$\mathrm{O}(8)$	2 687(6)	-2 209(11)	1340 (4)	7 594(6)	7461 (11)	$6024(4)$
$\mathrm{C}(1)$	$1708(4)$	4 207(10)	-670(3)	10 236(5)	1300 (11)	$7487(4)$
C(2)	$1315(5)$	5 038(12)	-169(4)	9 545(5)	464(11)	$7710(4)$
C(3)	782(4)	3 847(12)	79(4)	$9028(5)$	$1733(11)$	$7938(3)$
C(4)	$1309(4)$	2 245(11)	406(3)	8 583(5)	$2989(11)$	$7369(4)$
C(5)	$1745(4)$	1430 (10)	-72(3)	9 289(5)	$3908(11)$	$7157(4)$
C(6)	2 218(5)	-248(10)	208(3)	8 934(5)	5440 (11)	6 668(3)
C(7)	$2537(5)$	-1091(10)	-309(4)	$9669(5)$	$6324(11)$	$6521(4)$
C(8)	3 088(5)	67(10)	-573(3)	10 304(5)	$5161(12)$	$6313(4)$
C(9)	2 596(4)	$1716(10)$	-862(3)	10 646(5)	3 688(11)	$6841(3)$
C(10)	2 316(4)	2 680(10)	-323(3)	$9867(4)$	2 654(11)	6 912(3)
C(11)	$3100(5)$	2 834(11)	-1196(4)	11330 (5)	2 648(14)	6 677(4)
C(12)	3 374(5)	$1867(12)$	-1742(4)	12 108(5)	3 681(13)	6 655(4)
C(13)	$3896(5)$	253(12)	-1421(4)	$11791(5)$	5 108(13)	$6129(3)$
C(14)	3 314(5)	-807(10)	-1150(4)	11 089(5)	6 121(12)	6 291(4)
C(15)	3 804(6)	-2 514(13)	-979(4)	10 960(5)	7 707(13)	$5823(4)$
$\mathrm{C}(16)$	4 202(7)	-2703(14)	-1568(4)	$11867(6)$	8001 (13)	5 793(5)
C(17)	3 998(5)	-993(13)	-1948(4)	12 464(5)	6 486(14)	$6178(4)$
$\mathrm{C}(18)$	$4792(5)$	709(15)	-892(4)	$11451(6)$	$4367(15)$	$5412(4)$
C(19)	$3138(5)$	3 361(10)	266(3)	$9355(5)$	$1765(11)$	$6246(4)$
$\mathrm{C}(20)$	$4462(7)$	-45(14)	-2 844(4)	13 891(6)	$5659(16)$	$6276(5)$
C(21)	5 286(7)	235(21)	-3016(6)	14 520(6)	5 249(24)	$5923(5)$
$\mathrm{C}(22)$	$1828(5)$	$2035(11)$	1614(4)	$7139(5)$	$2459(13)$	$6552(4)$
C(23)	2 592(7)	2 479(15)	2271 (4)	6 636(6)	$1298(16)$	5977 (5)
C(24)	$3176(6)$	$-1055(13)$	$1350(4)$	7 580(6)	6063(14)	$5759(5)$
C(25)	4020 (6)	-696(16)	$1897(4)$	$6873(6)$	5461 (18)	$5126(5)$

$\left.\mathrm{s}, 18-\mathrm{H}_{3}\right), 1.45\left(3 \mathrm{H}, \mathrm{s}, 19-\mathrm{H}_{3}\right), 2.05$ and 2.16 (each $3 \mathrm{H}, \mathrm{s}, \mathrm{OAc}$), $5.01(1 \mathrm{H}, \mathrm{t}, J 2.9,6-\mathrm{H})$ and $5.59(1 \mathrm{H}, \mathrm{s}, 4-\mathrm{H})$.
Elution with 40% ethyl acetate-light petroleum gave $4 \beta, 6 \beta$ -diacetoxy-3 $3,5 \alpha$-dihydroxyandrostan-17-one $14(220 \mathrm{mg})$, which was crystallized from acetone as needles, m.p. $217-220^{\circ} \mathrm{C}$ (Found: C, 65.3; H, 7.9. $\mathrm{C}_{23} \mathrm{H}_{34} \mathrm{O}_{7}$ requires C, 65.4; H, 8.1\%); $v_{\max } / \mathrm{cm}^{-1} 3460 \mathrm{br}$ and $1737 ; \delta 0.89\left(3 \mathrm{H}, \mathrm{s}, 18-\mathrm{H}_{3}\right), 1.33(3 \mathrm{H}$, $\left.\mathrm{s}, 19-\mathrm{H}_{3}\right), 2.04$ and 2.13 (each $3 \mathrm{H}, \mathrm{s}, \mathrm{OAC}$), $3.35(1 \mathrm{H}, \mathrm{s}, \mathrm{OH})$, $4.33(1 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}), 5.02(1 \mathrm{H}, \mathrm{t}, J 2,6-\mathrm{H})$ and $5.16(1 \mathrm{H}, \mathrm{d}, J$ $3.5,4-\mathrm{H})$.

Preparation of $3 \beta, 6 \beta, 17 \beta$-Triacetoxy- $4 \alpha, 5 \alpha$-epoxy-androstane.-A solution of $3 \beta, 6 \beta$, diacetoxyandrost-4-en-17one $9(2 \mathrm{~g})$ in methanol ($200 \mathrm{~cm}^{3}$) was treated with sodium borohydride (1 g) at $0^{\circ} \mathrm{C}$ for 3 h . The excess of reagent was destroyed with acetic acid $\left(0.5 \mathrm{~cm}^{3}\right)$ and the solution was poured into water. The product was recovered in ethyl acetate and washed with water, and the solvent was evaporated off to give a gum. This was dissolved in chloroform ($100 \mathrm{~cm}^{3}$) and treated with MCPBA $(2.5 \mathrm{~g})$ at $0^{\circ} \mathrm{C}$. The mixture was allowed to attain room temperature and was stirred for 48 h before being washed successively with aq. sodium sulphite, aq. sodium hydrogen carbonate and water. The organic phase was dried and the solvent was evaporated off to give $3 \beta, 6 \beta$-diacetoxy$4 \alpha, 5 \alpha$-epoxyandrostan- 17β-ol $(1.95 \mathrm{~g})$ as a gum, $m / z 406\left(\mathrm{M}^{+}\right)$, $347(\mathrm{M}-59), 330(\mathrm{M}-76)$ and $294(\mathrm{M}-112) ; \delta 0.78$ ($3 \mathrm{H}, \mathrm{s}, 18-\mathrm{H}_{3}$), $1.19\left(3 \mathrm{H}, \mathrm{s}, 19-\mathrm{H}_{3}\right), 2.05$ and 2.07 (each $3 \mathrm{H}, \mathrm{s}$, OAC), $3.16(1 \mathrm{H}, \mathrm{s}, 4-\mathrm{H}), 3.67(1 \mathrm{H}, \mathrm{t}, J 8,17-\mathrm{H}), 4.27(1 \mathrm{H}, \mathrm{t}$, $J 3,6-\mathrm{H})$ and $4.91(1 \mathrm{H}, \mathrm{t}, J 8.5,3-\mathrm{H})$.
A solution of the alcohol (1.8 g) in dry pyridine ($10 \mathrm{~cm}^{3}$) was treated with acetic anhydride ($4 \mathrm{~cm}^{3}$) at room temperature for 20 h and was then poured into dil. hydrochloric acid. The product was recovered in ethyl acetate, washed successively
with aq. sodium hydrogen carbonate and water, and dried. The solvent was evaporated off under reduced pressure to give $3 \beta, 6 \beta, 17 \beta$-triacetoxy- $4 \alpha, 5 \alpha$-epoxyandrostane $11(1.8 \mathrm{~g})$, which was crystallized from ethyl acetate-light petroleum as needles, m.p. $134-135^{\circ} \mathrm{C}$ (Found: C, $67.0 ; \mathrm{H}, 8.1 . \mathrm{C}_{25} \mathrm{H}_{36} \mathrm{O}_{7}$ requires C, $66.9 ; \mathrm{H}, 8.1 \%$); $v_{\text {max }} / \mathrm{cm}^{-1} 1742 ; \delta 0.85(3 \mathrm{H}, \mathrm{s}$, $\left.18-\mathrm{H}_{3}\right), 1.22\left(3 \mathrm{H}, \mathrm{s}, 19-\mathrm{H}_{3}\right), 2.04,2.08$ and 2.10 (each 3 H , s, OAC), $3.19(1 \mathrm{H}, \mathrm{s}, 4-\mathrm{H}), 4.31(1 \mathrm{H}, \mathrm{t}, J 3,6-\mathrm{H}), 4.61(1 \mathrm{H}$, dd, $J .9$ and $9.1,17-\mathrm{H})$ and $4.94(1 \mathrm{H}, \mathrm{dd}, J 8.1$ and 8.9 , $3-H)$.

Oxidation of $3 \beta, 6 \beta, 17 \beta$-Triacetoxy- $4 \alpha, 5 \alpha$-epoxyandrostane.Aq. chromium trioxide $(75 \%)\left(1 \mathrm{~cm}^{3}\right)$ was added dropwise to a stirred solution of $3 \beta, 6 \beta, 17 \beta$-triacetoxy- $4 \alpha, 5 \alpha$-epoxyandrostane $(450 \mathrm{mg})$ in ethyl methyl ketone ($5 \mathrm{~cm}^{3}$) at $35-40^{\circ} \mathrm{C}$. The mixture was left for 40 min and was then poured into water. The product was recovered in ethyl acetate. The extracts were washed thoroughly with water and dried. The solvent was evaporated off and the residue was chromatographed on silica. Elution with 20% ethyl acetate-light petroleum gave $4 \beta, 6 \beta, 17 \beta-$ triacetoxy-5 α-hydroxyandrostan-3-one $13(230 \mathrm{mg})$, which was crystallized from ethyl acetate-light petroleum as needles, m.p. $232-234{ }^{\circ} \mathrm{C}$ (Found: C, $64.6 ; \mathrm{H}, 7.7 . \mathrm{C}_{25} \mathrm{H}_{36} \mathrm{O}_{8}$ requires $\mathrm{C}, 64.6$; $\mathrm{H}, 7.8 \%$); $v_{\text {max }} / \mathrm{cm}^{-1} 3420,1743,1735$ and $1728 ; \delta 0.84(3 \mathrm{H}, \mathrm{s}, 18-$ $\left.\mathrm{H}_{3}\right), 1.43\left(3 \mathrm{H}, \mathrm{s}, 19-\mathrm{H}_{3}\right), 2.03,2.04$ and 2.16 (each $3 \mathrm{H}, \mathrm{s}, \mathrm{OAC}$), $4.60(1 \mathrm{H}, \mathrm{t}, J 8,17-\mathrm{H}), 4.96(1 \mathrm{H}, \mathrm{t}, J 2.8,6-\mathrm{H})$ and $5.57(1 \mathrm{H}, \mathrm{s}$, 4-H).
Elution with 45% ethyl acetate-light petroleum gave $4 \beta, 6 \beta, 17 \beta$-triacetoxy- $3 \beta, 5 \alpha$-dihydroxyandrostane $15(80 \mathrm{mg})$, which was crystallized from acetone as needles, m.p. $252-255^{\circ} \mathrm{C}$ (Found: C, 64.4; H, 8.1. $\mathrm{C}_{25} \mathrm{H}_{38} \mathrm{O}_{8}$ requires C, 64.4; H, 8.2\%); $v_{\text {max }} / \mathrm{cm}^{-1} 3467,3450,1734$ and $1730 ; \delta 0.81\left(3 \mathrm{H}, \mathrm{s}, 18-\mathrm{H}_{3}\right)$, $1.32\left(3 \mathrm{H}, \mathrm{s}, 19-\mathrm{H}_{3}\right), 2.03,2.11$ and 2.17 (each $3 \mathrm{H}, \mathrm{s}, \mathrm{OAC}$), 4.31

Table 2 Intramolecular distances (\AA) and angles $\left({ }^{\circ}\right)$, with estimated standard deviations in parentheses, for the two independent molecules

(a) Bonds	a	b		a	b
$\mathrm{O}(1)-\mathrm{C}(17)$	1.417(11)	1.422(12)	$\mathrm{O}(1)-\mathrm{C}(20)$	1.33(10)	1.291(10)
$\mathrm{O}(2)-\mathrm{C}(20)$	1.173(12)	1.215(12)	$\mathrm{O}(3)-\mathrm{C}(5)$	1.442(7)	1.436(8)
$\mathrm{O}(4)-\mathrm{C}(4)$	1.427(7)	$1.449(8)$	$\mathrm{O}(4)-\mathrm{C}(22)$	1.324(10)	1.301(9)
$\mathrm{O}(5)-\mathrm{C}(22)$	1.178(11)	1.213(13)	$\mathrm{O}(6)-\mathrm{C}(3)$	1.418(11)	1.433(11)
$\mathrm{O}(7)-\mathrm{C}(6)$	1.454(7)	1.430(8)	$\mathrm{O}(7)-\mathrm{C}(24)$	1.342(10)	1.361(11)
$\mathrm{O}(8)-\mathrm{C}(24)$	1.210(14)	1.239(14)	$\mathrm{C}(1)-\mathrm{C}(2)$	1.555(12)	1.514(13)
$\mathrm{C}(1)-\mathrm{C}(10)$	1.569(10)	1.564(11)	$\mathrm{C}(2)-\mathrm{C}(3)$	1.494(13)	1.494(13)
$\mathrm{C}(3)-\mathrm{C}(4)$	1.552(12)	1.523(11)	$\mathrm{C}(4)-\mathrm{C}(5)$	1.556(12)	1.551(12)
$\mathrm{C}(5)-\mathrm{C}(6)$	1.548(11)	1.562(11)	$\mathrm{C}(5)-\mathrm{C}(10)$	1.570(11)	1.574(12)
$\mathrm{C}(6)-\mathrm{C}(7)$	1.511(12)	1.507(13)	$\mathrm{C}(7)-\mathrm{C}(8)$	1.519(12)	1.557(13)
$\mathrm{C}(8)-\mathrm{C}(9)$	1.543(10)	1.568(11)	$\mathrm{C}(8)-\mathrm{C}(14)$	1.543(12)	1.500 (12)
$\mathrm{C}(9)-\mathrm{C}(10)$	1.557(11)	1.558(12)	$\mathrm{C}(9)-\mathrm{C}(11)$	1.535(12)	1.519(13)
$\mathrm{C}(10)-\mathrm{C}(19)$	$1.555(9)$	1.518(9)	$\mathrm{C}(11)-\mathrm{C}(12)$	1.565(12)	1.520(13)
$\mathrm{C}(12)-\mathrm{C}(13)$	1.552(12)	1.536(13)	$\mathrm{C}(13)-\mathrm{C}(14)$	1.519(13)	1.529(13)
$\mathrm{C}(13)-\mathrm{C}(17)$	1.532(13)	1.525(14)	$\mathrm{C}(13)-\mathrm{C}(18)$	1.523(10)	1.518(12)
$\mathrm{C}(14)-\mathrm{C}(15)$	1.550(13)	1.564(14)	$\mathrm{C}(15)-\mathrm{C}(16)$	1.59(2)	1.513(15)
$\mathrm{C}(16)-\mathrm{C}(17)$	1.550(14)	1.576(14)	$\mathrm{C}(20)-\mathrm{C}(21)$	1.52(2)	1.49 (2)
$\mathrm{C}(22)-\mathrm{C}(23)$	1.528(10)	1.504(13)	$\mathrm{C}(24)-\mathrm{C}(25)$	$1.464(11)$	1.487(12)
(b) Angles					
$\mathrm{C}(17)-\mathrm{O}(1)-\mathrm{C}(20)$	119.5(7)	119.4(7)	$\mathrm{C}(4)-\mathrm{O}(4)-\mathrm{C}(22)$	118.2(6)	120.8(7)
$\mathrm{C}(6)-\mathrm{O}(7)-\mathrm{C}(24)$	119.9(6)	117.5(7)	$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{C}(10)$	$111.1(6)$	114.7(6)
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	113.0(7)	$111.2(7)$	$\mathrm{O}(6)-\mathrm{C}(3)-\mathrm{C}(2)$	112.3(8)	110.1(7)
$\mathrm{O}(6)-\mathrm{C}(3)-\mathrm{C}(4)$	109.3(6)	110.8(6)	$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	$112.2(6)$	111.0(7)
$\mathrm{O}(4)-\mathrm{C}(4)-\mathrm{C}(3)$	109.5(6)	107.5(7)	$\mathrm{O}(4)-\mathrm{C}(4)-\mathrm{C}(5)$	111.8(5)	111.4(6)
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)$	$111.5(6)$	109.8(6)	$\mathrm{O}(3)-\mathrm{C}(5)-\mathrm{C}(4)$	104.8(5)	105.4(6)
$\mathrm{O}(3)-\mathrm{C}(5)-\mathrm{C}(6)$	104.3(6)	103.2(6)	$\mathrm{O}(3)-\mathrm{C}(5)-\mathrm{C}(10)$	105.6(5)	106.0(5)
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)$	$113.2(6)$	114.7(6)	$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(10)$	114.0(6)	112.3 (7)
$\mathrm{C}(6)-\mathrm{C}(5)-\mathrm{C}(10)$	113.7(6)	113.9(7)	$\mathrm{O}(7)-\mathrm{C}(6)-\mathrm{C}(5)$	110.7(6)	$111.3(6)$
$\mathrm{O}(7)-\mathrm{C}(6)-\mathrm{C}(7)$	107.5(6)	111.4(6)	$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(7)$	111.3(6)	111.4(6)
$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(8)$	112.7(7)	115.4(7)	$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(9)$	111.6(6)	110.6(7)
$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(14)$	110.1(6)	111.0(7)	$\mathrm{C}(9)-\mathrm{C}(8)-\mathrm{C}(14)$	108.3(6)	108.2(6)
$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(10)$	112.4(6)	111.5(6)	$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(11)$	112.6(6)	110.6(7)
$\mathrm{C}(10)-\mathrm{C}(9)-\mathrm{C}(11)$	112.5(6)	114.6(7)	$\mathrm{C}(1)-\mathrm{C}(10)-\mathrm{C}(5)$	107.3(5)	107.3(6)
$\mathrm{C}(1)-\mathrm{C}(10)-\mathrm{C}(9)$	110.2(5)	109.7(5)	$\mathrm{C}(1)-\mathrm{C}(10)-\mathrm{C}(19)$	108.4(6)	108.4(7)
$\mathrm{C}(5)-\mathrm{C}(10)-\mathrm{C}(9)$	106.7(6)	107.0(7)	$\mathrm{C}(5)-\mathrm{C}(10)-\mathrm{C}(19)$	113.5(5)	113.4(6)
$\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(19)$	110.7(6)	110.9(6)	$\mathrm{C}(9)-\mathrm{C}(11)-\mathrm{C}(12)$	112.4(7)	113.2(8)
$\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{C}(13)$	110.3(6)	$110.5(6)$	$\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{C}(14)$	107.8(6)	108.6(7)
$\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{C}(17)$	114.1(6)	115.8(6)	$\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{C}(18)$	110.4(8)	109.2(8)
$\mathrm{C}(14)-\mathrm{C}(13)-\mathrm{C}(17)$	98.5(7)	100.2(8)	$\mathrm{C}(14)-\mathrm{C}(13)-\mathrm{C}(18)$	114.8(7)	112.7(6)
$\mathrm{C}(17)-\mathrm{C}(13)-\mathrm{C}(18)$	110.8(7)	$110.2(8)$	$\mathrm{C}(8)-\mathrm{C}(14)-\mathrm{C}(13)$	$113.1(7)$	$116.4(8)$
$\mathrm{C}(8)-\mathrm{C}(14)-\mathrm{C}(15)$	117.5(6)	120.3(6)	$\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{C}(15)$	103.7(7)	103.4(7)
$\mathrm{C}(14)-\mathrm{C}(15)-\mathrm{C}(16)$	102.8(7)	103.6(7)	$\mathrm{C}(15)-\mathrm{C}(16)-\mathrm{C}(17)$	103.9(8)	106.8(8)
$\mathrm{O}(1)-\mathrm{C}(17)-\mathrm{C}(13)$	115.1(7)	116.3(8)	$\mathrm{O}(1)-\mathrm{C}(17)-\mathrm{C}(16)$	109.5(7)	110.5(8)
$\mathrm{C}(13)-\mathrm{C}(17)-\mathrm{C}(16)$	105.1(7)	102.8(6)	$\mathrm{O}(1)-\mathrm{C}(20)-\mathrm{O}(2)$	123(1)	123(1)
$\mathrm{O}(1)-\mathrm{C}(20)-\mathrm{C}(21)$	110.5(8)	115.9(8)	$\mathrm{O}(2)-\mathrm{C}(20)-\mathrm{C}(21)$	126(1)	121.1(8)
$\mathrm{O}(4)-\mathrm{C}(22)-\mathrm{O}(5)$	123.1(6)	124.8(7)	$\mathrm{O}(4)-\mathrm{C}(22)-\mathrm{C} 23)$	111.9(7)	$111.0(8)$
$\mathrm{O}(5)-\mathrm{C}(22)-\mathrm{C}(23)$	125.0(8)	124.2(7)	$\mathrm{O}(7)-\mathrm{C}(24)-\mathrm{O}(8)$	121.1(7)	120.2(7)
$\mathrm{O}(7)-\mathrm{C}(24)-\mathrm{C}(25)$	112.9(9)	115.0(9)	$\mathrm{O}(8)-\mathrm{C}(24)-\mathrm{C}(25)$	125.9(9)	124.9(9)

($1 \mathrm{H}, \mathrm{br} \mathrm{s}, 3-\mathrm{H}$), $4.58(1 \mathrm{H}, \mathrm{t}, J 8,17-\mathrm{H}), 4.94$ ($1 \mathrm{H}, \mathrm{br} \mathrm{s}, 4-\mathrm{H}$) and $5.13(1 \mathrm{H}, \mathrm{t}, J 3.5,6-\mathrm{H})$.

Preparation of 17β-Acetoxy- 3α-chloro- $4 \beta, 5 \beta$-epoxyandrost-ane- 17β-Acetoxy- $4 \beta, 5 \beta$-epoxyandrostan- 3β-ol $17^{9}(750 \mathrm{mg})$ was added to a solution of triphenylphosphine (800 mg) in carbon tetrachloride ($20 \mathrm{~cm}^{3}$)-pyridine ($2 \mathrm{~cm}^{3}$) and the mixture was heated under reflux for 8 h , cooled and evaporated, and the residue was dissolved in ethyl acetate, washed successively with dil. hydrochloric acid, aq. sodium hydrogen carbonate and water, and dried. The solvent was evaporated off and the residue was chromatographed on silica. Elution with 5% ethyl acetatelight petroleum gave 17β-acetoxy- 3α-chloro- $4 \beta, 5 \beta$-epoxyandrostane $\mathbf{1 6}(501 \mathrm{mg})$, which was crystallized from ethyl acetatelight petroleum as needles, m.p. $110-111^{\circ} \mathrm{C}$ (Found: $\mathrm{C}, 68.8 ; \mathrm{H}$, 8.4. $\mathrm{C}_{21} \mathrm{H}_{31} \mathrm{ClO}_{3}$ requires C, $68.9 ; \mathrm{H}, 8.2 \%$); $v_{\text {max }} / \mathrm{cm}^{-1} 1728 ; \delta$ $0.80\left(3 \mathrm{H}, \mathrm{s}, 18-\mathrm{H}_{3}\right), 1.01\left(3 \mathrm{H}, \mathrm{s}, 19-\mathrm{H}_{3}\right), 2.00(3 \mathrm{H}, \mathrm{s}, \mathrm{OAC}), 3.07$ $(1 \mathrm{H}, \mathrm{s}, 4-\mathrm{H}), 4.15(1 \mathrm{H}, \mathrm{t}, J 7,3-\mathrm{H})$ and $4.6(1 \mathrm{H}, \mathrm{t}, J 8,17-\mathrm{H})$.
Elution with 6% ethyl acetate-light petroleum gave 17β -acetoxy- 3β-chloro- $4 \beta, 5 \beta$-epoxyandrostane $18(137 \mathrm{mg})$, identified by its IR and NMR spectra.

Preparation of 17β-Acetoxy- $4 \beta, 5 \beta$-epoxyandrostan- 3α-ol.-A solution of 17β-acetoxy- $4 \beta, 5 \beta$-epoxyandrostan- 3 -one (500 mg) in methanol ($20 \mathrm{~cm}^{3}$) was treated with sodium borohydride $(200 \mathrm{mg})$ at $0^{\circ} \mathrm{C}$ for 30 min . Acetic acid $\left(1 \mathrm{~cm}^{3}\right)$ was added, the solution was poured into water, and the solid was filtered off to give 17β-acetoxy- $4 \beta, 5 \beta$-epoxyandrostan- 3α-ol $19(250 \mathrm{mg})$, which was crystallized from light petroleum as needles, m.p. 169-171 ${ }^{\circ} \mathrm{C}$ (Found: C, 72.3; H, 9.1. $\mathrm{C}_{21} \mathrm{H}_{32} \mathrm{O}_{4}$ requires $\mathrm{C}, 72.4$; $\mathrm{H}, 9.3 \%) ; v_{\text {max }} / \mathrm{cm}^{-1} 3560$ and $1740 ; \delta 0.80\left(3 \mathrm{H}, \mathrm{s}, 18-\mathrm{H}_{3}\right)$, $1.02\left(3 \mathrm{H}, \mathrm{s}, 19-\mathrm{H}_{3}\right), 2.08(3 \mathrm{H}, \mathrm{s}, \mathrm{OAc}), 2.86(1 \mathrm{H}, \mathrm{s}, 4-\mathrm{H}), 4.00$ $(1 \mathrm{H}, \mathrm{t}, J 7,3-\mathrm{H})$ and $4.60(1 \mathrm{H}, \mathrm{t}, J 8,17-\mathrm{H})$.
Preparation of 17β-Acetoxy- 3β-chloro- $4 \beta, 5 \beta$-epoxyandros-tane.-17 β-Acetoxy-4 $\beta, 5 \beta$-epoxyandrostan- 3α-ol 19 (600 mg) was added to a solution of triphenylphosphine (650 mg) in carbon tetrachloride ($20 \mathrm{~cm}^{3}$)-pyridine ($2 \mathrm{~cm}^{3}$). The mixture was heated under reflux for 10 h , then cooled and evaporated, and the residue was dissolved in ethyl acetate. This solution was washed successively with dil. hydrochloric acid, aq. sodium hydrogen carbonate and water, and dried. The solvent was evaporated off and the residue was chromatographed on silica.

Elution with 10% ethyl acetate-light petroleum gave 178-acetoxy-3 3β-chloro- $4 \beta, 5 \beta$-epoxyandrostane $18(500 \mathrm{mg})$, which was crystallized from methyl acetate-light petroleum as needles, m.p. $109-110^{\circ} \mathrm{C}$ (Found: C, $68.5 ; \mathrm{H}, 8.2 . \mathrm{C}_{21} \mathrm{H}_{31} \mathrm{ClO}_{3}$ requires $\mathrm{C}, 68.7 ; \mathrm{H}, 8.5 \%) ; v_{\text {max }} / \mathrm{cm}^{-1} 1732 ; \delta 0.84\left(3 \mathrm{H}, \mathrm{s}, 18-\mathrm{H}_{3}\right), 1.08$ $\left(3 \mathrm{H}, \mathrm{s}, 19-\mathrm{H}_{3}\right), 2.03(3 \mathrm{H}, \mathrm{s}, \mathrm{OAC}), 3.14(1 \mathrm{H}, \mathrm{d}, J 3,4-\mathrm{H}), 4.16$ $(1 \mathrm{H}, \mathrm{t}, J 3,3-\mathrm{H})$ and $4.60(1 \mathrm{H}, \mathrm{t}, J 8,17-\mathrm{H})$.

Oxidation of 17β-Acetoxy- 3β-chloro- $4 \beta, 5 \beta$-epoxyandros-tane.-Aq. chromium trioxide (75%) ($2 \mathrm{~cm}^{3}$) was added dropwise to a stirred solution of 17β-acetoxy- 3β-chloro- $4 \beta, 5 \beta$ epoxyandrostane $18(500 \mathrm{mg})$ in ethyl methyl ketone ($15 \mathrm{~cm}^{3}$) at $35-40^{\circ} \mathrm{C}$. The solution was left for 1 h and was then poured into water. The product was recovered in ethyl acetate. The extract was washed thoroughly with water and dried. The solvent was evaporated off and the residue was chromatographed on silica. Elution with 7\% ethyl acetate-light petroleum gave the starting material (252 mg recovery). Further elution with 9% ethyl acetate-light petroleum gave a mixture (169 mg) of 17β -acetoxy-3 3 -chloro- 5α-hydroxyandrostan-4-one 21 and 17β -acetoxy- 3β-chloro- $4 \beta, 5 \alpha$-dihydroxyandrostane 20 (NMR), which could not be further separated.

A solution of the mixture (150 mg) in dry benzene ($10 \mathrm{~cm}^{3}$) was heated with tributyltin hydride ($0.4 \mathrm{~cm}^{3}$) and azoisobutyronitrile (30 mg) under reflux for 5 h . The solution was cooled, the solvent was evaporated off and the residue was chromatographed on silica. Elution with 9% ethyl acetate-light petroleum gave a mixture (55 mg) from which 17β-acetoxy- $5 \alpha-$ hydroxyandrostan- 4 -one 23 was crystallized as needles, m.p. 194-197 ${ }^{\circ} \mathrm{C}$ (Found: C, 68.6; H, 9.1. $\mathrm{C}_{21} \mathrm{H}_{32} \mathrm{O}_{4} \cdot \mathrm{H}_{2} \mathrm{O}$ requires C , $68.8 ; \mathrm{H}, 9.35 \%$); $v_{\max } / \mathrm{cm}^{-1} 3501,1735$ and $1713 ; \delta 0.77$ and 0.79 (each $3 \mathrm{H}, \mathrm{s}, 18$ - and $19-\mathrm{H}_{3}$), $2.02(3 \mathrm{H}, \mathrm{s}, \mathrm{OAc})$ and 4.58 $(1 \mathrm{H}, \mathrm{t}, J 8,17-\mathrm{H})$.
Elution with 20% ethyl acetate-light petroleum gave 17β -acetoxy- $4 \beta, 5 \alpha$-dihydroxyandrostane $22(92 \mathrm{mg}$), which was crystallized from acetone-light petroleum as needles, m.p. 191$192{ }^{\circ} \mathrm{C}$ (Found: C, 68.7; H, 9.8. $\mathrm{C}_{21} \mathrm{H}_{34} \mathrm{O}_{4} \cdot \mathrm{H}_{2} \mathrm{O}$ requires C , $68.4 ; \mathrm{H}, 9.8 \%$); $v_{\text {max }} / \mathrm{cm}^{-1} 3515$ and $1716 ; \delta 0.78\left(3 \mathrm{H}, \mathrm{s}, 18-\mathrm{H}_{3}\right)$, $1.18\left(3 \mathrm{H}, \mathrm{s}, 19-\mathrm{H}_{3}\right), 2.03(3 \mathrm{H}, \mathrm{s}, \mathrm{OAc}), 3.54(1 \mathrm{H}, \mathrm{d}, J 2.4,4-\mathrm{H})$ and $4.58(1 \mathrm{H}, \mathrm{dd}, J 7.8$ and $9.1,17-\mathrm{H})$.

There was no reaction on attempted oxidation of the $3 x-$ chloro- $4 \beta, 5 \beta$-epoxide with chromium trioxide in ethyl methyl ketone at $40^{\circ} \mathrm{C}$ for 5 h .
X-Ray Structure Determination of Compound 15.-Crystal data. $\mathrm{C}_{25} \mathrm{H}_{38} \mathrm{O}_{8}, M=466.6$, monoclinic, space group $P 2_{1}$, $a=16.221(23), b=7.960(15), c=20.878(8) \AA, \beta=110.90^{\circ}$, $V=2518.4 \AA^{3}, Z=4, D_{\mathrm{c}}=1.23 \mathrm{~g} \mathrm{~cm}^{-3}, F(000)=1008$, monochromated Mo-K α radiation, $\lambda=0.71069 \AA, \mu=0.8$ cm^{-1}.
Data were collected using a crystal $1.5 \times 0.3 \times 0.2 \mathrm{~mm}$ on
an Enraf-Nonius CAD4 diffractometer. Reflections were measured using a $\theta-2 \theta$ scan with $\Delta \theta=(0.8+0.35 \tan \theta)^{\circ}$ and a maximum scan time of 1 min . A total of 4777 unique reflections were measured with $2<\theta<25^{\circ}$ and $+h,+k, \pm l$ and 2969 reflections with $\left|F^{2}\right|>3 \sigma\left(F^{2}\right)$ were used in the refinement where $\sigma\left(F^{2}\right)=\left\{\sigma^{2}(I)+(0.04 I)^{2}\right\}^{\frac{1}{2}} / L_{\mathrm{p}}$. There was no correction for absorption.

The structure was solved by direct methods using SHELXS86. Non-hydrogen atoms were refined anisotropically by fullmatrix least-squares using the Enraf-Nonius SDP-Plus program package. Hydrogen atoms, except for the hydroxy groups and the ester methyl groups, were held fixed at calculated positions with $u_{\text {iso }}=1.3 u_{\text {eq }}$ for the atom to which they are bonded. The absolute structure was assigned from the known chemical synthesis. The weighting scheme was $w=$ $1 / \sigma^{2}(P)$ and the final residuals were $R=0.077, R^{\prime}=0.101$. There are two independent molecules with essentially the same geometry. The X-ray molecular structure is shown in Fig. 1. Fractional atomic co-ordinates and intramolecular distances and angles are given in Tables 1 and 2.*

Acknowledgements

We thank the Ministry of Higher Education, Iraq, for financial support for N . F.

* Supplementary data: Hydrogen atom co-ordinates, torsional angles and temperature factors have been deposited with the Cambridge Crystallographic Data Centre (see section 5.6 .3 of Instructions for Authors, issue 1).

References

1 L. Knof, Justus Liebigs Ann. Chem., 1961, 647, 53.
2 J. R. Hanson and A. Truneh, J. Chem. Soc., Perkin Trans. 1, 1988, 2001.
3 S. Julia and B. Furer, Bull. Soc. Chim. Fr., 1966, 1106.
4 T. H. Campion, G. A. Morrison and J. B. Wilkinson, J. Chem. Soc., Perkin Trans. 1, 1976, 2508.
5 M. Ishiguro, H. Saito, Y. Hirano and N. Ikekawa, J. Chem. Soc., Perkin Trans. 1, 1980, 2503.
6 G. A. Morrison and J. B. Wilkinson, J. Chem. Soc., Perkin Trans. 1, 1989, 2003.
7 S. Julia and B. Furer, Bull. Soc. Chim. Fr., 1966, 1114.
8 J. R. Hanson and P. B. Reese, J. Chem. Soc., Perkin Trans. 1, 1988, 331.

9 P. Keller, Frl. Eggart, H. Wehrli, K. Schaffner and O. Jeger, Helv. Chim. Acta, 1967, 50, 2259.
10 M. Davis and V. Petrow, J. Chem. Soc., 1949, 2536.

Paper 0/04911E
Received 31st October 1990
Accepted 11 th December 1990

